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Gadong, Brunei Darussalam; cSchool of Science, Psychology and Sport, Federation University, Ballarat, Australia; 
dSchool of Biology, Chemistry and Environment, Vinh University, Vinh, Vietnam

ABSTRACT
The impacts of climate change, in particular via elevated temperature 
and atmospheric CO2 concentrations, cause differential photosynthetic 
responses between native and invasive alien plants, often resulting in 
varying magnitudes of plant growth and productivity. This study inves-
tigated variations in photosynthetic responses of an invasive alien 
Acacia species and two successional groups of tropical heath forest 
species: early secondary (Buchanania arborescens and Dillenia suffruti-
cosa) and secondary (Calophyllum inophyllum and Ploiarium alternifo-
lium) groups at elevated temperature (25to 30°C) and CO2 levels (400 to 
700 ppm). Invasive A. mangium appears better adapted to higher 
temperature and CO2. High temperature improved CO2 assimilation of 
A. mangium compared to heath species, which was attributed to 
increased transpiration rate and stomatal conductance but decreased 
water-use efficiency. Photosynthetic responses showed no differences 
in early secondary species at elevated temperature and CO2 but invasive 
A. mangium and P. alternifolium were stimulated by elevated CO2. The 
greater maximum net photosynthesis of A. mangium coincided with 
lower light compensation point and electron transport rate for RuBP 
regeneration, to a certain extent. Findings provide insights into possible 
underlying ecophysiological mechanisms contributing to the invasion 
success of Acacias in degraded tropical heath forests in response to 
future climate change.
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Introduction

Global climate change is a major concern to agriculture and forestry due to its impact on 
physiology and productivity of plants (Choi et al., 2017; Dusenge et al., 2019; Ehleringer 
et al., 1991; Eschenbach et al., 1998; Kallarackal & Roby, 2012; Lloyd & Farquhar, 2008; 
Peperkorn et al., 2005; Possell & Hewitt, 2009). In the context of plant invasions, elevated 
temperature and atmospheric CO2 concentrations resulting from climate change have 
been shown to facilitate the spread of invasive plant species (Bradley et al., 2010; 
Hellmann et al., 2008). Many invasive plants benefit from elevated atmospheric CO2 
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concentrations (Liu et al., 2017), thus exacerbating the impacts of invasions on native 
ecosystems (Dukes & Mooney, 1999). Climate change can promote alien plant invasions 
either by accelerating growth and modifying ecophysiological responses of invasive 
species, or by increasing the competitive ability of invasive species over native species 
(Cai, 2011; Dukes, 2000; McDowell, 2002; Ruiz-Vera et al., 2013; Walther et al., 2009).

Leaf gas exchange measurements in response to variations in temperature and CO2 

concentration using a gas exchange system have provided insights into instantaneous 
photosynthetic parameters, such as net CO2 assimilation rate (A), stomatal conductance 
(Gs), transpiration rate (E) and water-use efficiency (WUE), and biochemical parameters of 
leaf photosynthesis, such as Rubisco activity and electron transport capacity (Aleric & 
Kirkman, 2005; Farquhar & Sharkey, 1982, 1984; Golbeck & Est, 2014; Sharkey, 1985; 
Sharkey et al., 2007), and are widely used to determine underlying biochemical and physical 
limitations to photosynthesis (Long & Bernacchi, 2003; Sharkey, 2016). Both elevated 
atmospheric temperature and CO2 levels generally affect plant photosynthetic performances 
(Eschenbach et al., 1998; Possell & Hewitt, 2009). In addition, the photosynthetic responses 
of invasive and noninvasive species to climate change vary (McDowell, 2002; Ruiz-Vera 
et al., 2013), with more problematic invasive species responding particularly strongly to 
elevated CO2 levels (Dukes, 2000). Invasive species differ in key functional traits from co- 
existing native plants by having efficient dispersal mechanism, higher resource acquisition, 
superior colonization ability, rapid life cycle and reproduction, faster growth, broad eco-
physiological niches, and extensive environmental tolerance and adaptability (Funk et al., 
2016; Hellmann et al., 2008; Higgins & Richardson, 2014; Le Maitre et al., 2011; Mathakutha 
et al., 2019; Rejmánek & Richardson, 1996; Richardson & Rejmánek, 2011; Van Kleunen 
et al., 2010).

Among non-native plant species recorded in tropical east Asia, exotic Acacia species are 
increasingly becoming invasive (Corlett, 2010). Australian Acacia species were introduced 
to tropical Brunei Darussalam of Northwest Borneo in the 1990s for timber plantations and 
as roadside plantings (Osunkoya et al., 2005). Since their initial introduction, four Acacia 
species have been recorded (Sukri et al., 2018), with Acacia mangium documented as the 
most invasive Acacia species in Brunei Darussalam (Osunkoya & Damit, 2005). Degraded 
tropical and coastal heath forest communities in Brunei Darussalam have been most heavily 
affected by Acacia invasion (Din et al., 2015; Tuah, 2014) as the nitrogen (N2)-fixing Acacia 
species are able to establish themselves in forests with nutrient-poor sandy soils (Brunig, 
1974; Ghazoul & Sheil, 2010), outcompeting and displacing native plant species (Osunkoya 
et al., 2005). These invaded coastal heath forests become heavily dominated by Acacia, with 
co-occurring remnant native heath forest species and native secondary species (Osunkoya & 
Damit, 2005; Tuah, 2014).

Acacia species are typically associated with traits that are fundamental at early stages of 
succession (Aguilera et al., 2015; Koutika & Richardson, 2019), and thus can tolerate and 
adapt to a wide gradient of low to high light intensities, showing greater relative growth 
rates and more efficient net photosynthetic rates (Peperkorn et al., 2005). For example, both 
Acacia auriculiformis and Acacia mangium recorded increased photosynthetic responses in 
the form of stomatal conductance (Gs), transpiration rate (E) and saturated net photo-
synthesis (Amax) when grown under high irradiances (1500 µmol (photon) m–2 s–1) and 
temperature of 30–32°C (Le et al., 2016a, 2016b, 2019; Yu & Ong, 2002). The N2-fixing 
capacity of Acacia species results in greater leaf N per unit area or unit mass and leaf mass 
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area (LMA) but they may experience lower photosynthetic N-use efficiency (PNUE) due to 
their inability in allocating N to photosynthetic mechanism, particularly during unlimited 
supplies of water and N resources (Novriyanti et al., 2012). In contrast, the responses of 
native tropical plants to variation of temperature and light are species-specific (Bazzaz & 
Pickett, 1980; Davies & Semui, 2006), and may depend on their successional groups 
(Khurana & Singh, 2001; Ribeiro et al., 2005), such as early successional group and late 
successional group (Swaine & Whitmore, 1988). For example, enhanced photosynthetic 
traits, such as Amax, Gs and dark respiration (Rd) were reported for nine sympatric pioneer 
tree species of Bornean Macaranga under high light irradiances (Davies, 1998). In a pot 
experiment, the early secondary tropical tree, Astronium graveolens, showed higher values 
of CO2 assimilation (A) and E rates compared to the secondary and shade-tolerant species, 
Cariniana legalis (Ribeiro et al., 2005).

Understanding variations in photosynthetic responses of invasive plants and native 
plants from different successional groups to elevated temperature and atmospheric CO2 

concentration can assist policymakers in predicting risks from plant invaders and develop-
ing effective forest management strategies. Here, we examined the photosynthetic responses 
of invasive Acacia mangium Willd. and native heath forest plants from different succes-
sional groups (i.e. early secondary and secondary species). Specifically, we investigated the 
effects of elevated temperature (25°C and 30°C) or CO2 concentrations (400 and 700 ppm) 
separately on various instantaneous leaf gas exchange and biochemical parameters of 
photosynthesis between A. mangium and, native early secondary and secondary heath 
forest species. We formulated two hypotheses on differential photosynthetic responses:

(1) Invasive A. mangium will exhibit increased photosynthetic capacity with elevated 
temperature and CO2 compared to native heath species because invasive plants have 
broader range of environmental adaptability and tolerance.

(2) Photosynthetic responses of early secondary plant species, but not secondary species, 
will be positively affected by elevated temperature and CO2 because early secondary 
species have traits associated with early stages of succession, similar to invasive 
species.

Materials and methods

Study site and species

This study was conducted within secondary coastal heath (Kerangas) forests (N 04°57.388, 
E 114°52.194; elevation 60 m a.s.l) near Universiti Brunei Darussalam in Brunei 
Darussalam, Northwest Borneo from June to August 2015. Brunei Darussalam recorded 
a mean annual temperature of 28.8°C and a total annual rainfall of 3714 mm in 2015, 
which were recorded at the Brunei International Airport, located c.a. 14 km away from 
the study site (Brunei Darussalam Meteorological Department, unpublished data). The 
Bornean heath forest is a unique type of aseasonal lowland rainforest that develop 
primarily on podzolized, highly acidic, sandy soils with low macronutrient contents 
(Ghazoul & Sheil, 2010; Ibrahim, 2020; Jaafar et al., 2016; N. N Rosli, 2016). The main 
soil properties of Bornean heath forests, particularly at the study sites are presented in 
Table 1.

JOURNAL OF SUSTAINABLE FORESTRY 3



At the study site, secondary heath forests co-occur with Acacia-invaded habi-
tats in patches within a background of urban and settlement areas (Figure 1; see 
also Yusoff et al., 2019). Invasive Acacia mangium, A. auriculiformis and 
A. holosericea in the study sites were found to co-exist with secondary heath 
forest species, such as Dillenia suffruticosa, Ploiarium alternifolium, Melastoma 
malabathricum, Symplocos polyandra, Buchanania arborescens, Calophyllum ino-
phyllum and Calophyllum soulatrri (Tuah, 2014). A 100 m line transect radiating 
at 280° from North in the Acacia-invaded sites was established within the heath 
forest, following methods by Buckland et al. (2007). Along the line transect, three 
trees (6–8 m in height) for each plant species were randomly chosen, with 
selected trees c.a. 10 m apart from each other.

Table 1. Differences in soil properties at depths (0–20 cm) of Acacia-invaded (disturbed) and 
non-invaded sites (undisturbed) in coastal heath forests of Brunei Darussalam. Data are 
expressed as mean ± standard error, SE (n = 6 plots per habitat). All values were reported 
in Ibrahim (2020) and N. N Rosli (2016).

Soil Variables Acacia-invaded heath forest Non-invaded heath forest

pH 4.93 ± 0.06 4.65 ± 0.09
Exchangeable K (mg kg−1) 0.03 ± 0.004 0.057 ± 0.01
Exchangeable Ca (mg kg−1) 0.01 ± 0.002 0.021 ± 0.004
Exchangeable Mg (mg kg−1) 0.033 ± 0.007 0.041 ± 0.011
Total N (g kg−1) 0.860 ± 0.030 0.670 ± 0.020
Total P (g kg−1) 0.26 ± 0.03 0.21 ± 0.05
Gravimetric water content (%) 8.20 ± 0.60 11.33 ± 0.59
Temperature (°C) 28.40 ± 0.19 27.22 ± 0.03

Figure 1. Location of the study site. A 100 m line transect in Acacia-invaded sites within coastal heath 
forest in the Brunei-Muara district of Brunei Darussalam was set up.
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A total of five plant species were selected and investigated for this study: Acacia mangium 
Willd. (the invasive species) and Buchanania arborescens (Blume) Blume, Dillenia suffru-
ticosa (Griff.) Martelli, Calophyllum inophyllum L. and Ploiarium alternifolium (Vahl) 
Melch (the native heath forest species). Acacia mangium was the most dominant invasive 
Acacia species at the study site, while the four selected native species were commonly found 
co-occurring with Acacia species at these study sites and in other disturbed coastal heath 
forests in Brunei Darussalam (Tuah, 2014). We classified the four selected native species 
into two successional groups based on their growth performances and shade adaptation 
(Bazzaz & Pickett, 1980; Davies & Semui, 2006; Raaimakers et al., 1995; Ribeiro et al., 2005). 
Similar to A. mangium, early secondary plant species (B. arborescens and D. suffruticosa) are 
generally light-demanding and exhibit faster growth than secondary plant species 
(C. inophyllum and P. alternifolium), which are more shade-tolerant (Kartawinata et al., 
2008; Ribeiro et al., 2005; Tuah, 2014; Le et al., 2019). Acacia mangium (Fabaceae) is an 
evergreen fast-growing tree native to parts of Indonesia, Papua New Guinea and Australia 
(Koutika & Richardson, 2019), which can grow up to 30 m tall (Hedge et al., 2013; Slik, 
2009; Yu & Ong, 2002). Buchanania arborescens (Anacardiaceae) is an evergreen, drought- 
tolerant tree (c.a. 35–40 m) typical of heath forest and open grasslands, belonging to early 
secondary successional group (Koh et al., 2009; Nelson et al., 2007; Slik, 2009). Dillenia 
suffruticosa (Dilleniaceae) is a large, hardy, and extremely high light-demanding pioneer 
shrub (c.a. 10 m tall), growing mainly in secondary forests and open areas (Davies & Semui, 
2006; H. R. Rosli, 2014; Slik, 2009). The two secondary species are slow-growing species 
typical of coastal heath and secondary forests with sandy soils but C. inophyllum 
(Calophyllaceae) is a medium-sized to a large evergreen tree (c.a. 8–30 m) (Lim, 2012; 
Slik, 2009), while P. alternifolium (Bonnetiaceae) is an understory tree species between 4 
and 13 m tall (Hashim et al., 2016; Osunkoya et al., 2005). Based on their growth environ-
ment and life form type, all study species here, including Acacia mangium have heterobaric 
leaves that typically display a degree of stomatal patchiness and non-uniform leaf photo-
synthesis specifically during dry conditions (Kenzo et al., 2007; Sommerville et al., 2012; 
Terashima, 1992). However, during the study period (June–August 2015), there were 
moderate to high monthly rainfall levels (ranging from 226.9 mm in June to 308.6 mm in 
August) and target trees did not show any obvious signs of wilting or drought-stress.

Ex-situ leaf gas exchange measurements

Two twigs from each of three mature and healthy individuals (n = 3) of A. mangium, 
B. arborescens, C. inophyllum, D. suffruticosa and P. alternifolium were collected for 
ex-situ leaf gas exchange measurements. Only twigs with fully expanded leaves, con-
sistently exposed to sunlight during sunny days were collected from the tree top (at c. 
a. 5 m height) in the morning (between 9:30 am until 12 noon) as described in Le 
et al. (2016a, 2016b, 2019) and Weerasinghe et al. (2014). Leaf gas exchange measure-
ments were immediately conducted on leaves using a portable, open-flow gas exchange 
system fitted with a 2 × 3 cm chamber and an LED lamp as the light source (LI- 
6400XT, LI-COR Inc., USA). The leaves were clamped into the chamber and left to 
stabilize to the measuring conditions for 15 to 30 minutes or until CO2 assimilation 
rate and stomatal conductance values were steady.
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Photosynthetic light response (A-Li) curves of the leaves were developed under a set of 
photosynthetic photon flux density (PPFD) values of 10, 40, 60, 120, 250, 500, 1000, 1500, 
and 1800 µmol (photon) m−2 s−1 at a relative humidity of 50–60% and CO2 concentration of 
400 ppm inside the chamber. The leaf temperature in the chamber was maintained at either 
25°C or 30°C as the mean leaf temperature in the study sites ranges from 26.5°C to 29.0°C. 
Photosynthetic CO2 response (A-Ci) curves were also developed under varying CO2 con-
centration values of 50, 100, 150, 250, 380, 500, 700, 950, and 1250 ppm at a relative 
humidity of 50–60%, PPFD of 1500 µmol (photon) m−2 s−1 and 25°C inside the chamber.

The instantaneous leaf gas exchange parameters were measured at a PPFD of 
1500 μmol m−2 s−1, CO2 concentration of 400 ppm and leaf temperature of 25°C and 30°C 
as well as at a PPFD of 1500 μmol m−2 s−1, leaf temperature of 25°C and CO2 concentration of 
400 and 700 ppm. Net CO2 assimilation rates (A, μmol CO2 m−2 s−1), transpiration rates (E, 
mmol H2O m−2 s−1) and stomatal conductance (Gs, mol H2O m−2 s−1) were directly obtained 
from the portable gas exchange system, while the water-use efficiency (WUE, μmol CO2 

mmol−1 H2O) was calculated from the A/E ratio following Farquhar and Richards (1984).
Maximum net photosynthesis or light-saturated photosynthesis (Amax, μmol CO2 

m−2 s−1), apparent quantum yield (Aqe, µmol−1 quantum), light compensation point 
(LCP, µmol−1 quantum m−2 s−1), maximum carboxylation rate of Rubisco (Vcmax, µmol 
CO2 m−2 s−1) and potential electron transport rate for Ribulose-1,5-bisphosphate 
(RuBP) regeneration (J; µmol CO2 m−2 s−1) based on CO2 response curves at 25°C 
and PPFD of 1500 µmol (photon) m−2 s−1 were calculated using the formulae by Aleric 
and Kirkman (2005), and Sharkey et al. (2007). We used a nonlinear mixed models 
procedure in Statistical Analysis System (SAS) Version 9.2 (Statistical Analysis System 
[SAS], 2009) to fit curves of photosynthetic data for each plant species. We then 
estimated Amax, Vcmax and J using analysis of parameter estimation PROC NONLIN 
in SAS (Peek et al., 2002).

Statistical analysis

A two-way Analysis of Variance (ANOVA) was used to evaluate the effect of species, 
temperature or CO2 concentrations, and their interactions on variables of instantaneous 
gas exchange performances (A, E, Gs and WUE). Significant pairwise differences were then 
further analyzed by using Tukey’s tests. One-way ANOVA was used to evaluate between- 
species differences in biochemical photosynthetic parameters (Amax, Aqe, LCP, Vcmax and J). 
All tests utilized sample size of n = 3 trees per species. Assumptions of normality and 
heterogeneity of variances were tested, and were not violated. All statistical analysis was 
conducted using SAS Version 9.2 (Statistical Analysis System [SAS], 2009).

Results

Variation in photosynthetic light response curves and photosynthetic performances 
at leaf temperatures of 25 and 30ºC

Photosynthetic light response curves at 25°C and CO2 concentration of 400 ppm showed 
C. inophyllum apparently recorded the highest photosynthetic capacities, followed by 
P. alternifolium, D. suffruticosa and A. mangium, while B. arborescens had the lowest 
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photosynthetic capacities (Figure 2). Contrastingly, at 30°C, the invasive A. mangium 
seemingly showed the highest photosynthetic capacities, followed by early secondary 
species (B. arborescens and D. suffruticosa), and secondary species, with P. alternifolium 
had the lowest photosynthetic capacities (Figure 2).

To evaluate variations in the instantaneous gas exchange performance para-
meters (A, E, Gs and WUE) of invasive A. mangium and native heath species, 
data obtained at PPFD of 1500 µmol (photon) m–2 s−1 and CO2 concentration of 
400 ppm at 25°C and 30°C were used (Table 2). The effects of species, tempera-
ture, and their interactions were significant on all parameters except Gs (Table 2). 
The results showed that at 25°C, invasive A. mangium showed significantly lower 
A and E compared to the native species, particularly the secondary species. In 
contrast, at 30°C, A. mangium recorded significantly greater A and E than the 
native heath species and A. mangium at 25°C. The A between early secondary 
species demonstrated no significant differences at both temperatures. Both A and 
E of secondary species, and E of early secondary species (B. arborescens only) 
were reduced at elevated temperature (30°C).

Stomatal conductance (Gs) of A. mangium was significantly lower than Gs of the early 
secondary species, D. suffruticosa but not significantly different from other species at 25°C 
(Table 2). However, at 30°C, A. mangium showed significantly higher Gs than all four 
native species and that of A. mangium itself at 25°C. Both D. suffruticosa and 
P. alternifolium recorded significant lower Gs at increased temperature, while Gs for 
B. arborescens and C. inophyllum did not differ significantly at both temperatures. 
Acacia mangium was reported to have higher WUE than P. alternifolium (secondary 
species) at 25°C but was similar to other species. However, at 30°C, the invasive 
A. mangium recorded significantly lower WUE than B. arborescens and P. alternifolium 
but did not differ significantly with the others. The WUE values were significantly lower at 
30°C than at 25°C for A. mangium and D. suffruticosa only but vice versa for 
P. alternifolium.

Figure 2. Photosynthetic light response (A-Li) curves of invasive Acacia mangium and four co-occurring 
tropical species (Buchanania arborescens and Dillenia suffruticosa of early secondary species and, 
Calophyllum inophyllum and Ploiarium alternifolium of secondary species) in Brunei’s coastal heath forest, 
measured at a constant CO2 concentration of 400 ppm and leaf temperature of either 25 or 30°C. The 
data are expressed as mean values (n = 3 trees per species) but standard error values are excluded for 
ease of data interpretation.
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Variation in photosynthetic CO2 response curve and photosynthetic performances at  
CO2 concentrations of 400 and 700 ppm

Photosynthetic CO2 response curves at 25°C and constant photosynthetic photon flux 
density (PPFD) of 1500 µmol (photon) m−2 s−1 apparently showed P. alternifolium (early 
secondary species) recorded the highest photosynthetic capacities, followed by A. mangium, 
B. arborescens, C. inophyllum, while D. suffruticosa seemingly showed the lowest photo-
synthetic capacities (Figure 3).

Variations of the instantaneous gas exchange performance parameters (A, E, Gs and 
WUE) of invasive A. mangium and native heath species at CO2 concentrations of 400 and 
700 ppm were evaluated using data obtained at 1500 µmol (photon) m−2 s−1 PPFD and 25ºC 
(Table 3). Similar to the effects of temperature, the effects of species, CO2 concentration, 
and their interactions were significant on all parameters except Gs (Table 3). At ambient 
CO2 concentration (400 ppm), invasive A. mangium recorded significantly lower A than 

Table 2. Variation in instantaneous gas exchange performances (net CO2 assimilation rate or A, µmol CO2 

m−2 s−1; transpiration rate or E, mol H2O m−2 s−1; stomatal conductance or Gs, mmol H2O m−2 s−1 and 
water-use efficiency or WUE, µmol CO2 mmol−1 H2O) of invasive Acacia mangium and four tropical species 
(Buchanania arborescens and Dillenia suffruticosa of early secondary species and, Calophyllum inophyllum 
and Ploiarium alternifolium of secondary species) in Brunei’s coastal heath forest. Measurements were 
made at a photosynthetic photon flux density (PPFD) of 1500 μmol (photon) m−2 s−1, CO2 concentration 
of 400 ppm and leaf temperature of either 25°C or 30°C. The data were expressed as means ± standard 
error, SE (n = 3 trees per species). A two-way ANOVA on the effects of study species (A. mangium, 
B. arborescens, C. inophyllum, D. suffruticosa, and P. alternifolium) and leaf temperature regimes (25°C and 
30°C) on A, E, Gs, and WUE were conducted at 5% significance level, which was indicated by *: p < .05; **: 
p < .01; ***: p < .001, ns: no significant. Note: Means with different lowercase letters within the same row 
showed significant differences between temperatures within a species, while means with different 
uppercase letters within the same column showed significant differences between species.

Net CO2 assimilation rate (A) (µmol CO2 m
−2 s−1)

Type Species Temperature F-value

25°C 30°C Species Temperature Species x temperature

a) Invasive A. mangium 6.78 ± 0.04b, C 9.04 ± 0.47a, A 5.83** 53.39*** 38.38***
b) Early secondary B. arborescens 6.99 ± 0.21a, BC 6.70 ± 0.41a, B

D. suffruticosa 7.77 ± 0.07a, B 6.62 ± 0.37a, B

c) Secondary C. inophyllum 8.77 ± 0.20a, A 5.08 ± 0.50b, B

P. alternifolium 9.01 ± 0.07a, A 4.59 ± 0.35b, B

Transpiration rate (E) (mol H2O m−2 s−1)
a) Invasive A. mangium 0.99 ± 0.10b, C 2.02 ± 0.03a, A 7.09** 7.11* 22.53***
b) Early secondary B. arborescens 1.10 ± 0.03a, BC 0.96 ± 0.02b, BC

D. suffruticosa 1.56 ± 0.19a, AB 1.39 ± 0.18a, B

c) Secondary C. inophyllum 1.74 ± 0.07a, A 0.97 ± 0.08b, BC

P. alternifolium 1.50 ± 0.14a, ABC 0.66 ± 0.09b, C

Stomatal conductance (Gs) (mmol H2O m−2 s−1)
a) Invasive A. mangium 0.07 ± 0.008b, BC 0.15 ± 0.012a, A 17.88*** 3.47ns 15.63***
b) Early secondary B. arborescens 0.05 ± 0.010a, C 0.04 ± 0.003a, B

D. suffruticosa 0.14 ± 0.017a, A 0.07 ± 0.012b, B

c) Secondary C. inophyllum 0.04 ± 0.005a, C 0.05 ± 0.007a, B

P. alternifolium 0.11 ± 0.008a, AB 0.04 ± 0.003b, B

Water-use efficiency (WUE) (µmol CO2 mmol−1 H2O)
a) Invasive A. mangium 6.82 ± 0.28a, AB 4.80 ± 0.03b, B 7.01** 8.58** 10.02***
b) Early secondary B. arborescens 7.20 ± 0.73a, A 6.04 ± 0.34a, A

D. suffruticosa 6.15 ± 0.26a, ABC 4.79 ± 0.44b, B

c) Secondary C. inophyllum 4.99 ± 0.06a, BC 5.44 ± 0.20a, AB

P. alternifolium 4.86 ± 0.02b, C 6.46 ± 0.30a, A
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D. suffruticosa and secondary species but was similar to B. arborescens. In contrast, at 
elevated CO2 concentration (700 ppm), the A of A. mangium and P. alternifolium increased 
relative to the other species, and the values were significantly higher at 700 ppm than at 
400 ppm. The A values of early secondary species and C. inophyllum were not significantly 
different between 400 and 700 ppm.

At 400 ppm, A. mangium showed significantly lower E than D. suffruticosa and second-
ary species but was similar to B. arborescens (Table 3). Acacia mangium also recorded 
significantly lower Gs than D. suffruticosa but did not differ with the others at 400 ppm. 
However, at elevated CO2 concentration, both E and Gs of all species, including 
A. mangium, were significantly lower than P. alternifolium. Invasive A. mangium and 
P. alternifolium were not significantly different in E between CO2 concentrations but 
early secondary species and C. inophyllum significantly decreased E at elevated CO2. 
However, for Gs, only D. suffruticosa had lower values at increased CO2 but vice versa for 
P. alternifolium. All study species recorded significantly increased WUE values at elevated 
CO2. At 400 ppm, the invasive A. mangium recorded significantly greater WUE than 
P. alternifolium but significantly similar WUE with the other species at 700 ppm.

Comparison of photosynthetic capacities and related parameters of response curve 
between invasive Acacia mangium and tropical heath species

All the biochemical photosynthetic response curve parameters significantly differed 
between invasive and native heath species, except Aqe and Vcmax at 25°C and PPFD of 
1500 µmol (photon) m−2 s−1 (Table 4). Ploiarium alternifolium (secondary species) recorded 
significantly greater Amax than early secondary species but similar to invasive A. mangium 
and its counterpart, C. inophyllum. Meanwhile, LCP values of A. mangium and 

Figure 3. Photosynthetic CO2 response (A-Ci) curves of invasive Acacia mangium and four co-occurring 
tropical species (Buchanania arborescens and Dillenia suffruticosa of early secondary species and, 
Calophyllum inophyllum and Ploiarium alternifolium of secondary species) in Brunei’s coastal heath forest, 
measured at constant photosynthetic photon flux density of 1500 µmol (photon) m−2 s−1 and leaf 
temperature of 25°C. The data are expressed as mean values (n = 3 trees per species) but standard error 
values are excluded for ease of data interpretation.
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P. alternifolium were significantly lower than early secondary species and C. inophyllum. 
However, D. suffruticosa showed significantly lower J values than other species, including 
secondary species but similar J to A. mangium.

Discussion

Our findings on photosynthetic light response curves clearly revealed differential patterns of 
photosynthetic performances at contrasting leaf temperatures (25 and 30ºC) among the 
three different plant groups (i.e. invasive species, and successional groups of early secondary 
and secondary species). At 25ºC, the secondary species’ response curves dominated higher 
photosynthetic capacities, followed by invasive A. mangium and early secondary species. 
However, when the leaf temperature was increased (30ºC), the invasive A. mangium showed 
higher photosynthetic capacities compared to heath species. Enhanced photosynthetic 

Table 3. Variation in instantaneous gas exchange performances (net CO2 assimilation rate or A, µmol CO2 

m−2 s−1; transpiration rate or E, mol H2O m−2 s−1; stomatal conductance or Gs, mmol H2O m−2 s−1 and 
water-use efficiency or WUE, µmol CO2 mmol−1 H2O) of invasive Acacia mangium and four tropical species 
(Buchanania arborescens and Dillenia suffruticosa of early secondary species and, Calophyllum inophyllum 
and Ploiarium alternifolium of secondary species) in Brunei’s coastal heath forest. Measurements were 
made at a photosynthetic photon flux density (PPFD) of 1500 μmol (photon) m−2 s−1, leaf temperature of 
25°C and CO2 concentration (CO2 conc.) of either 400 or 700 ppm. The data were expressed as means ± 
standard error, SE (n = 3 trees per species). A two-way ANOVA on the effects of study species 
(A. mangium, B. arborescens, C. inophyllum, D. suffruticosa, and P. alternifolium) and CO2 concentration 
(400 and 700 ppm) on A, E, Gs and WUE were conducted at 5% significance level, which was indicated by 
*: p < .05; **: p < .01; ***: p < .001, ns: no significant. Note: Means with different lowercase letters within 
the same row showed significant differences between CO2 concentrations within a species, while means 
with different uppercase letters within the same column showed significant differences between species.

Net CO2 assimilation rate (A) (µmol CO2 m
−2 s−1)

Type Species CO2 concentration F-value

400 ppm 700 ppm Species CO2 conc. Species x CO2 conc.

a) Invasive A. mangium 6.78 ± 0.05b, C 11.15 ± 0.21a, A 35.76*** 29.40*** 25.07***
b) Early secondary B. arborescens 6.99 ± 0.21a, BC 6.11 ± 0.37a, C

D. suffruticosa 7.77 ± 0.07a, B 7.75 ± 0.50a, BC

c) Secondary C. inophyllum 8.77 ± 0.19a, A 9.18 ± 0.54a, B

P. alternifolium 9.01 ± 0.07b, A 11.02 ± 0.35a, A

Transpiration rate (E) (mol H2O m−2 s−1)
a) Invasive A. mangium 0.99 ± 0.10a, C 1.05 ± 0.01a, B 9.08*** 10.76** 6.82**
b) Early secondary B. arborescens 1.10 ± 0.02a, BC 0.58 ± 0.14b, B

D. suffruticosa 1.56 ± 0.19a, A 0.87 ± 0.19b, B

c) Secondary C. inophyllum 1.17 ± 0.18a, AB 0.69 ± 0.06b, B

P. alternifolium 1.50 ± 0.13a, AB 2.05 ± 0.38a, A

Stomatal conductance (Gs) (mmol H2O m−2 s−1)
a) Invasive A. mangium 0.07 ± 0.008a, BC 0.08 ± 0.002a, B 23.72*** 0.13ns 10.73***
b) Early secondary B. arborescens 0.05 ± 0.011a, C 0.04 ± 0.010a, B

D. suffruticosa 0.14 ± 0.01a, A 0.06 ± 0.010b, B

c) Secondary C. inophyllum 0.04 ± 0.005a, C 0.05 ± 0.004a, B

P. alternifolium 0.11 ± 0.010b, AB 0.18 ± 0.030a, A

Water-use efficiency (WUE) (µmol CO2 mmol−1 H2O)
a) Invasive A. mangium 6.82 ± 0.28b, AB 10.68 ± 0.11a, AB 5.63** 52.22*** 2.72*
b) Early secondary B. arborescens 7.20 ± 0.73b, A 13.02 ± 2.25a, A

D. suffruticosa 6.15 ± 0.26b, ABC 9.60 ± 1.02a, AB

c) Secondary C. inophyllum 4.99 ± 0.02b, BC 12.89 ± 0.32a, A

P. alternifolium 4.86 ± 0.06b, C 6.80 ± 0.61a, B
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capacities of A. mangium in response to elevated temperature are consistent with the 
findings of Yu and Ong (2002), who also reported that 30–32°C as the optimum tempera-
ture for photosynthetic CO2 assimilation of A. mangium phyllodes. Le et al. (2016b) also 
reported enriched photosynthesis in terms of CO2 assimilation rate for A. auriculiformis at 
elevated temperature compared to native heath species, Andira inermis and Mangifera 
indica. Acacia mangium appears well-adapted to higher temperatures and potentially high 
light intensity typical of a tropical climate likely due to its adaptation of their photosystem II 
(Le et al., 2019; Yu & Ong, 2002). This variation is also possible due to the balance between 
RuBP carboxylation and regeneration, which are both temperature-dependent processes of 
photosynthesis (Hikosaka et al., 1999, 2016).

For the four native heath species, we found that increasing temperature by 5°C lowered 
the photosynthetic capacities of secondary species (C. inophyllum and P. alternifolium) 
but did not affect the early secondary species (B. arborescens and D. suffruticosa). Our 
results may reflect light preference of secondary species as they are slow-growing and 
shade-tolerant species that are greatly adapted to low light levels (i.e. lower temperature) 
(Bloor & Grubb, 2003; Hashim et al., 2016; Poorter & Bongers, 2006; Slik, 2009). In 
contrast, early secondary species are light-demanding (Davies & Semui, 2006; 
Kartawinata et al., 2008; Slik, 2009) and their CO2 assimilation and photosynthetic 
capacities do not seem to be affected by elevated temperature. Comparable findings 
were reported by Ribeiro et al. (2005) in Brazil, whereby an early secondary tree species, 
Guazuma ulmifolia had significantly higher net CO2 assimilation than a secondary tree 
species, Rhamnidium elaeocarpum when exposed to high irradiance and temperature 
conditions. Based on their photosynthetic performances, there appears to be preliminary 
evidence from our study that the early secondary species are able to cope with the 
variations in environmental parameters, such as high light availability and temperature, 
in disturbed forest habitats as well as in the presence of invasive A. mangium, despite 
experiencing no improvement in their CO2 assimilation rates.

Similar to Novriyanti et al. (2012), our study has also revealed that A. mangium at 25°C 
has lower A and E but higher WUE than native species, although it is crucial to note that the 
former study utilized indigenous Australian Acacia and Eucalyptus seedlings in a controlled 
ex-situ environment. Contrastingly, the increase in A of A. mangium at 30°C displayed 

Table 4. Biochemical photosynthetic parameters (maximum net photosynthesis or light-saturated 
photosynthesis or Amax, mmol CO2 m

–2 s–1; apparent quantum yield or Aqe, μmol CO2 μmol−1 quantum; 
light compensation point or LCP, µmol–1 quantum m–2 s–1; maximum carboxylation rate of Rubisco or 
Vcmax, µmol CO2 m–2 s–1 and potential electron transport rate for Ribulose-1, 5-bisphosphate (RuBP) 
regeneration or J, µmol CO2 m–2 s–1) of the invasive Acacia mangium and four tropical species 
(Buchanania arborescens and Dillenia suffruticosa of early secondary species and, Calophyllum inophyllum 
and Ploiarium alternifolium of secondary species) in Brunei’s coastal heath forests at 25°C and PPFD of 
1500 µmol (photon) m−2 s−1. Values were expressed as means ± standard error, SE (n = 3 trees per 
species). Different letters within the same column indicated significantly different means at p < .05 using 
a Tukey’s test.

Group Species Amax Aqe LCP Vcmax J

Invasive A. mangium 12.00 ± 0.34ab 0.0043 ± 0.0003a 75.23 ± 0.53b 28.86 ± 0.95a 94.43 ± 2.23ab

Early secondary B. arborescens 10.43 ± 0.45b 0.0051 ± 0.0001a 107.45 ± 3.52a 30.52 ± 2.16a 108.16 ± 4.57a

D. suffruticosa 11.36 ± 0.16b 0.0042 ± 0.0001a 102.57 ± 2.27a 25.22 ± 0.37a 92.54 ± 1.29b

Secondary C. inophyllum 11.81 ± 0.19ab 0.0042 ± 0.0003a 127.15 ± 2.48a 29.20 ± 0.24a 106.86 ± 1.13a

P. alternifolium 12.95 ± 0.33a 0.0051 ± 0.0001a 94.05 ± 0.44b 28.21 ± 1.04a 101.28 ± 1.92a
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greater E and Gs by two-fold but lower WUE than other heath species. Based on these 
findings, we suggest that differences in photosynthetic capacities between the study species 
(invasive vs. heath species) may be related to the stomatal control mechanisms that create 
a trade-off between CO2 demands for photosynthesis and water loss via transpiration in 
response to varying environmental parameters (Lawson et al., 2010; Medina et al., 2002). At 
the same time, under optimum environmental conditions, biochemical processes in the 
mesophyll cells, which contribute to photosynthetic rate, are also improved due to increased 
enzymatic activity and electron transport chain capacity (Li et al., 2016). Different radiation 
quality has also been reported in influencing photosynthesis of A. mangium, where expo-
sure to white light or complete spectrum of sunlight resulted in higher photosynthetic 
performances than monochromatic radiation (Yu & Ong, 2003) but this aspect was not 
determined in our study.

Additionally, higher A, E and Gs with lower WUE in A. mangium at elevated tempera-
ture could possibly be due to its rapid uptake of soil water compared to the different 
successional groups of heath forest species. Introduced fast-growing species, such as 
invasive A. mangium, can consume much more soil water than native species (Ibrahim, 
2020; Siddiq & Cao, 2016). Several studies have also reported that Acacia species are able to 
modify soil water dynamics in field and controlled environments (Do et al., 2008; Dye & 
Jermain, 2004; Groengroeft et al., 2018; Le Maitre et al., 2000; Otieno et al., 2001, 2005). 
These findings can have important implications on water-limited and nutrient-poor forests, 
such as tropical heath forests, particularly with the continued presence of Acacia species. 
Acacia species are known to reduce soil nutrient and water availability (Ibrahim, 2020; Le 
Maitre et al., 2000; Norisada et al., 2005; Tanaka et al., 2015), thus negatively impacting the 
growth performance and productivity of native species in response to competition for water 
and nutrients.

No consistent pattern (i.e. lower or no differences) was reported for either the early 
secondary or secondary species in terms of their Gs, E and WUE responses to high 
temperature (30°C). In general, species with thicker leaf tissues and more compact leaves 
(i.e. high leaf mass area or LMA) can enhance water diffusional resistance, causing greater 
stomatal resistance (i.e. lower Gs) and transpirational resistance (i.e. lower E), thus reducing 
WUE and total photosynthetic output (Gibson, 1998; Givnish, 1988; Novriyanti et al., 
2012). Yusoff (2015) showed that heath forest species have thicker leaves compared to 
pioneer species, while invasive Acacia species recorded similar or slightly lower LMA than 
heath forest species (Jaafar, 2020; Osunkoya et al., 2004), which typically possesses relatively 
small but scleromorphic leaves (Turner et al., 2000). The differences in leaf morphological 
traits may have resulted in higher A, E and Gs but lower WUE in A. mangium than native 
heath species at elevated temperature but these attributes cannot be further confirmed as 
leaf morphology was not assessed in this study.

Patterns for photosynthetic CO2 response curves were similar to those of the photosyn-
thetic light response curves at 25ºC, such that the secondary species’ response curves 
(particularly P. alternifolium) dominated higher photosynthetic capacities, followed by 
invasive A. mangium and early secondary species. At 400 ppm, secondary species displayed 
significantly higher A compared to early secondary species and invasive A. mangium. 
However, at elevated CO2 (700 ppm), only the invasive A. mangium and P. alternifolium 
(secondary species) showed enhanced A by c.a. 64% and c.a. 22%, respectively, compared to 
ambient CO2 level. Comparable to elevated temperature, the enhancement of A here was 
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associated with increases in E and Gs but also lower WUE, however, this pattern was clearly 
seen for P. alternifolium only and not invasive A. mangium. Similar increases in photo-
synthetic capacities with elevated CO2 have also been recorded in other invasive species, 
such as mesquite (Prosopis glandulosa) (Polley et al., 2003), Bromus madritensis, Mikania 
micrantha, Wedelia trilobata and Ipomoea cairica (Salo, 2005). An increment of 37% in 
photosynthetic capacities has been reported when A. mangium was treated with elevated 
CO2 (354 vs. 712 ppm) (Ziska et al., 1991). The fast-growing trait of Acacia species could 
also be a factor in contributing toward higher above-ground productivity (Atkin et al., 1999) 
and potentially CO2 assimilation at elevated CO2.

For the native species in our study, elevated CO2 appeared to increase photosynthetic 
capacity of secondary species (P. alternifolium only) but did not affect the early secondary 
species and C. inophyllum (secondary species). Many plant species increase their photo-
synthesis and growth under elevated CO2 and unlimited environmental resources (Choi 
et al., 2017), although some reviews concluded that elevated CO2 is unlikely to have any 
positive effect on tropical forest productivity (e.g., Wright, 2005). We suggest that the 
discrepancies in A between species of different successional groups in our study may be 
due to between-species differences in leaf morphology and anatomy resulting in changes to 
light-harvesting process, CO2 carboxylation (Rubisco production and activity) and leaf 
chemistry, such as N concentration (Choi et al., 2017; Niinemets, 2010; Novriyanti et al., 
2012; Rogers et al., 1996). In a review of photosynthetic capacities of 43 different trees 
species, Niinemets (2010) concluded that light-harvesting process, which in turn promotes 
CO2 diffusion into the mesophyll cell through the stomata resulting in higher photosyn-
thetic capacities, was efficiently generated for species that are tall and large-sized with high 
foliage aggregation. Our secondary species (P. alternifolium) have thick and narrow leaves 
(i.e. high LMA) (Yusoff, 2015) compared to the early secondary species (personal observa-
tion), and this could have resulted in rapid light-harvesting process and CO2 carboxylation 
in secondary species.

In terms of biochemical photosynthetic response curve parameters estimated using CO2 

response curves at 25°C and PPFD of 1500 µmol (photon) m−2 s−1, the increases in Amax by 
P. alternifolium (secondary heath forest species) and invasive A. mangium, but not early 
secondary species, were associated with patterns of decreasing LCP and J. This study also 
revealed that the RuBP carboxylation efficiency and quantum yield did not have much 
influence on Amax. This was similarly observed by Hikosaka et al. (1999) where photosyn-
thetic rate of plants grown below 30°C was limited by RuBP regeneration, and not RuBP 
carboxylation. In addition, plants with a lower LCP tolerate deeper shade and lower light 
level than plants with a higher LCP (Valladares & Niinemets, 2008), which is consistent with 
P. alternifolium as a slow-growing, shade-tolerant and secondary plant species (Hashim 
et al., 2016; Osunkoya et al., 2005) but not with A. mangium. However, our study also 
seemed to suggest that invasive A. mangium can express remarkable adaptability to a wide 
spectrum of light conditions (i.e. shade-tolerant traits and light-demanding traits) and thus 
have the ability to rapidly regenerate under both forest canopy and gaps in the forest 
communities. Similar findings were also previously reported by Aguilera et al. (2015), 
Badalamenti et al. (2018), Bonari et al. (2017), and Rodríguez et al. (2017) that in addition 
to high-light adaptation, invasive Acacia dealbata and A. saligna demonstrated shade- 
tolerant traits under the canopy of native and non-native Mediterranean forest ecosystems 
of South America and Europe.
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One main limitation of our study was the use of only two specific values of 
elevated temperature (30°C) and CO2 concentrations (700 ppm), rather than 
a range of values. In particular, the elevated temperature of 30°C was likely 
more similar to on-site daily temperatures (mean in-situ leaf temperatures ranged 
from 26.5°C to 29.0°C), rather than as a way of simulating a potential global 
warming scenario in a tropical climate. For example, maximum daily tempera-
tures for Brunei Darussalam can reach 31–35°C (Brunei Darussalam 
Meteorological Department, unpublished data). Other photosynthesis studies on 
A. mangium have attempted higher temperatures of between 30°C and 40°C (Le 
et al., 2019; Yu & Ong, 2002), while optimum ecosystem air temperature for 
photosynthesis recorded in seven tropical forest sites ranged from 23.7°C to 28.1° 
C (Tan et al., 2017). Additionally, our study’s interpretation is limited by our 
approach of quantifying photosynthetic data using instantaneous gas exchange 
parameters through in-situ leaf measurements, as leaf-level responses are difficult 
to scale up to whole plant or ecosystem-level responses. Nevertheless, we high-
light that our findings at leaf-level are important in providing preliminary evi-
dence that invasive A. mangium appears to have an advantage in photosynthetic 
responses over co-occurring native species in response to elevated temperature 
(30°C) and CO2 (700 ppm). Further studies are necessary to provide a more 
complete model of photosynthetic responses, including biochemical responses 
with leaf morphological and anatomical traits, of invasive alien and native species 
in response to long-term exposure and combined effects of changing temperature, 
CO2 concentrations, rainfall levels, and nutrients.

Our findings have broader implications upon sustainable forestry practices and the 
management of invaded tropical forests. Firstly, we found that photosynthetic 
responses of early secondary species (B. arborescens and D. suffruticosa) co-existing 
with A. mangium appear to be relatively unaffected by changes in temperature and 
CO2 concentrations. This suggests that while A. mangium may continue to invade 
these coastal heath forests, the early secondary species (B. arborescens and 
D. suffruticosa) may be suitable species to use for restoration of Acacia-invaded coastal 
heath habitats as their photosynthetic responses remained unaffected and they are able 
to co-occur with Acacia mangium. Secondly, forest restoration programs are increas-
ingly implemented worldwide as a climate change mitigation strategy (Bastin et al., 
2019; Chazdon & Brancalion, 2019), with some programs opting to use fast-growing 
non-native species such as Acacia. Our results indicate that non-native invasive species 
may positively benefit from the impacts of climate change to the detriment of native 
flora, and thus non-natives should be avoided in these forest restoration programs. 
Lastly, our findings are also important for policymakers to consider in developing 
effective invasive species management strategies, as invasive species ranges are antici-
pated to further expand under climate change scenarios predicted by the 
Intergovernmental Panel for Climate Change [IPCC] (2014, 2018). At our study sites 
in tropical Brunei Darussalam, if Acacia invasion into these invaded heath forests is 
left unmanaged, then the resulting monodominance of Acacia species (Osunkoya & 
Damit, 2005) may eventually cause further ecosystem changes which will likely be 
enhanced by the effects of climate change.
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Data deposition

Data on leaf gas exchange and biochemical parameters of photosynthesis of invasive Acacia mangium 
and tropical heath forest species are available at Dryad Digital Repository (https://doi.org/10.5061/ 
dryad.d51c5b00d).
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